The Crystal and Molecular Structure of a Cobalt(III) Compound of the Quadridentate Ligand N,N'-o-Phenylenebis(salicylideneiminate) in a Strained Non-Planar Configuration

D. CUMMINS, E. D. MCKENZIE

Chemistry Department, The University, Sheffield S3 7HF, U.K.

and H. MILBURN

Department of Chemistry, Napier College, Edinburgh EH10 5DT, U.K.

(Received November 25, 1974)

[Co(salen)] {I for $B = \cdot CH_2 \cdot CH_2 \cdot$ } reacts with O₂ and β -diketonates^{1,2}, α -ketoacetic esters,³ ω -nitroacetophenone² and malonic esters³ to give cobalt(III) compounds of type II, in which the quadridentate ligand has a strained⁴ non-planar configuration. These conditions produce cobalt-

carbon bonded species with other potential carbanions, such as acetonitriles and mono-substituted acetylenes,⁵ but no evidence could be obtained for this alternative bonding mode of the β -diketonates, *etc*.

By contrast, the more rigidly planar quadridentate ligand in [Co(salph)] (I, $B = o \cdot C_6 H_4$) should favour C-bonding over the O,O-bidentate mode. This is marginally true. Compounds with [Co(salph)] are less easily prepared, but we have obtained [Co(salph)(L)] (where L = the monoanion of dibenzoylmethane, 3-(2-thenoyl)1,1,1-trifluoroacetone, ethylacetoacetate, or diethylmalonic ester). Their i.r. spectra prove that the last two compounds are indeed C-bonded (free carbonyls), but that the two β -diketonate compounds have the same structure II as their salen analogues.^{4,6}

The dibenzoylmethanide compound [C₃₅H₂₅Co-

 N_2O_4] gave orange-brown crystals from methanol. Monoclinic (P2₁/n), a = 16.89(1), b = 16.47(1), c = 9.84(1), $\beta = 90.85(5)$, $D_m = 1.440$, $D_c = 1.446$, Z = 4. 3091 independent reflections were obtained on a Stoe 'Stadi 2' 2-circle automatic diffractometer (MoK_{α} with a graphite monochromator). The structure was solved by Patterson and Fourier techniques, and refined by block-diagonal least-squares to R = 0.076 using anisotropic thermal parameters for the cobalt, and isotropic ones for all other non-hydrogen atoms.

The structure is of type II and closely parallels those of [Co(salen)(L)] {L = $acac^6$ and $bzac^4$ }; but here the Co–O bond lengths involving the quadridentate are significantly different, with that of the out-of-plane salicylidene moiety being longer than normal {1.921(5) Å, cf. 1.877(5) Å to the other sal oxygen}. This reflects the greater strain required to force the salph ligand into the non-planar configuration. Such strain is taken up largely in a number of angular distortions of the *o*-phenylene and the outof-plane salicylaldimine moieties (Table).

TABLE. Selected Bond Angles in the Quadridentate Ligand (°). The atoms O(1), N(1) and N(2) are co-planar with the cobalt.

$4 \sqrt{\frac{1}{2}} -0(1) (2)0^{\frac{10}{2}} \sqrt{\frac{19}{2}} 17$			
$5 - 6 - N_{(1)} (2) - 14 - 14$			
9			
O(1)-C(1)-C(6)	124.5	C(15)-C(20)-O(2)	123.9
C(1) - C(6) - C(7)	123.5	C(14) - C(15) - C(20)	118.5
C(6) - C(7) - N(1)	124.3	N(2)-C(14)-C(15)	121.2
C(7) - N(1) - C(8)	121.8	C(13) - N(2) - C(14)	121.8
N(1)-C(8)-C(13)	114.4	C(8) - C(13) - N(2)	112.5

Bond angles in the in-plane salicylaldimine are normal as are all bond-lengths within the quadridentate.

Clearly chelating ligands can adopt what may appear to be quite a strained configuration if the total bonding situation in the molecule requires it.

Acknowledgements

We thank the S.R.C. for financial support, and Drs. N. A. and P. M. Bailey for the use of their crystallographic programmes.

References

- S. N. Poddar and D. K. Biswas, J. Inorg. Nuclear Chem., 31, 565 (1969); A. Bigotto, G. Costa, G. Mestroni, G. Pellizer, A. Puxeddu, E. Reisonhofer, L. Stefani and G. Tauzher, Inorg. Chim. Acta Rev., 4, 41 (1970);
 - R. J. Cozens and K. S. Murray, Aust. J. Chem., 25, 911 (1972).
- 2 D. Cummins, B. M. Higson and E. D. McKenzie, *J.C.S. Dalton*, 1359 (1973).
- 3 D. Cummins and E. D. McKenzie, unpublished results.
- 4 N. A. Bailey, B. M. Higson and E. D. McKenzie, J.C.S. Dalton, 503 (1972).
- 5 N. A. Bailey, B. M. Higson and E. D. McKenzie, *Inorg. Nuclear Chem. Letters*, 5, 591 (1971); D. Cummins, B. M. Higson and E. D. McKenzie, *J.C.S. Dalton*, 414 (1973); D. Cummins, E. D. McKenzie and A. Segnitz, unpublished results.
- 6 M. Calligaris, G. Manzini, G. Nardin and L. Randaccio, J.C.S. Dalton, 543 (1972).